	g of Industrial bot
Course Code: 21NHOPXX	Credits: 3
L: T:P:S : 3:0:0:0	CIE Marks: 50
Exam Hours: 03	SEE Marks: 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Infer the various coordinate systems and degrees of freedom for a robot
CO2	Illustrate the robotic coordinate systems by teaching the robot
CO3	Examine the functionalities of robotic end effectors
CO4	Develop various industrial applications using FANUC Robot ER-4iA
CO5	Model various applications using Roboguide simulation too
CO6	Experiment with FANUC Robot ER-4iA using teach pendant

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
21NHOPX					Inc		Roboti					
X						Aut	omatio	n				
CO1	3	3	1	1	3	1	-	-	-	-	-	1
CO2	3	3	2	1	3	-	-	-	-	-	-	1
CO3	3	3	2	1	3	-	-	-	-	-	2	1
CO4	-	3	3	3	3	-	-	-	-	-	3	1
CO5	-	3	3	3	3	-	-	-	-	-	3	1
CO6	-	3	3	3	3	-	-	-	-	_	3	1
orrelation le	vels: 1	- Less	(Low)	2-M	loderate	e (Med	ium)	3-	Substa	ntial (Hi	gh)	

Module	Module Contents	Hours	COs
No			
1	BASICS OF ROBOTICS Basic Concepts – Definition – Three laws – Degrees of Freedom. Robot – Components of a robot, Classification of robots Articulated – Cartesian – Cylindrical – Polar – SCARA – Delta – Robot anatomy – Co-ordinate systems, Work envelope – Specifications – Pitch, yaw, roll, joint notations, speed of motion and pay load – Robot parts and their functions.	08	CO1
2	 ROBOT TEACHING Teach pendant programming: Various Teaching Methods, Task Programming, A Robot Program as a Path in Space, Motion Interpolation. <i>Hands on:</i> Explanation on tool Orienting Selection & Creation of Teach program Explanation on Joint, Linear & Circular motion Program testing, editing & Touch up Using and setting up of User frame Vi. Using and setting up of Tool Frame 	08	CO2, CO6
3	ROBOTSENSORS, ACTUATORS, ENDEFFECTORS AND INSTRUCTION SET Sensors and Actuators: Resistors, Capacitors, Inductors, Transducers, PIR sensors, Optical Transducers, Servomotor, Stepper Motors.End effectors – Grippers: Mechanical grippers, Hydraulic & Pneumatic grippers, Magnetic grippers, Vacuum grippers, RCC grippers – Two and three fingered grippers –External grippers – Selection considerations, Gripper force analysis.Instruction set – Registers, Timers, Wait, Branching.Hands on: i. Practice on various I/O instructions ii. Practice on Timer/Wait and Branching Instructions iii. Practice on user Alarms	08	CO3, CO6

	INDUSTRIAL APPLICATIONS OF ROBOTS	08	CO4,
	Robot Application : Implementation of robots in		CO6
	industries Various steps, Machine loading/unloading.		
4	Processing operation, Assembly and Inspection, Feature		
	Application, Material handling Applications – PICK and		
	PLACE & Palletization, Robot cycle time analysis		
	Handa and		
	Hands on:		
	i. Practice on Pick and Place application		
	ii. Practice on Palletization		
	iii. Practice on real time applications		
	ROBOT PROGRAMMING AND SIMULATION	08	CO5,
			CO6
	Introduction to Robo Guide: Create, program and		
5	simulate a robotic work cell- Integrated Virtual Teach		
5	Pendant looks and operates like a real Teach Pendant-		
	Import CAD models of parts- Reach verification,		
	collision detection, accurate cycle time and robot		
	trajectory and other system-		
	Hands on:		
	Practice on		
	i. Reach verification		
	ii. collision detection		
	iii. accurate cycle time		
	iv. robot trajectory		
	v. other system		

TEXT BOOKS:

- [1]. Introduction to Robotics: mechanics and control, Craig J J, 3/E,Pearson Education India,2008.
- [2]. Deb S.R, "Robotics Technology and flexible automation", Tata McGraw-Hill Education, 2nd Edition 2017.
- [3]. Mikell P Groover& Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics, "Technology Programming and Applications", McGraw Hill, 2012.

REFERENCE BOOKS:

[1]. Introduction to Robotics: S K Saha, Tata McGraw-Hill Education, 2008

[2]. ROBOT GUIDE MANUAL, FANUC.

Mapping of CO v/s PSO:

СО	PSO1	PSO2			
21NHOP XX	INDUSTRIAL ROBOTICS AND AUTOMATION				
CO1	2	2			
CO2	2	2			
CO3	2	2			
CO4	2	2			
CO5	2	2			
CO6	2	2			

Assessment Pattern CIE- Continuous Internal Evaluation Theory (50 marks)

Bloom's Taxonomy	Tests	Assignments	Reports
Marks	25	15	10
Remember		-	-
Understand	5	-	5
Apply	10	7.5	5
Analyze	5	7.5	-
Evaluate	5	-	-
Create	-		-

SEE- Semester End Examination Theory (50 Marks)

Bloom's Taxonomy	Tests
Remember	0
Understand	5
Apply	30
Analyze	5
Evaluate	5
Create	5