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 The department of Information Science and Engineering has conducted Expert talk 

on the topic “Object Oriented Programming” for the 4th semester students on 14th APRIL, 

2019 under the supervision of ISE Head of the department, Dr. Anandhi R J at ISE 

department. The expert speaker, Ms. Sushma was invited to conduct the same. 

• Speaker is multi skilled professional with 7+ years of experience in the IT industry 

specialized with OS, Data Structures, Data Science, and Java.  

 

VARIOUS SESSIONS THROUGHT THE PROGRAM: 

 





 

 
  

Expert talk on Object Oriented Programming taken by Ms. Sushma 

 

TOPICS COVERED: 

• Introduction to Object Oriented Programming 

• Features 

• OOP Languages 

• Design Patterns 

 INTRODUCTION TO OBJECT ORIENTED PROGRAMMING 

 Object-oriented programming (OOP) is a programming paradigm based on the 

concept of "objects", which can contain data, in the form of fields (often known 

as attributes), and code, in the form of procedures (often known as methods). A 

feature of objects is an object's procedures that can access and often modify the data 

fields of the object with which they are associated (objects have a notion of "this" or 

"self"). In OOP, computer programs are designed by making them out of objects that 

interact with one another. OOP languages are diverse, but the most popular ones 

are class-based, meaning that objects are instances of classes, which also determine 

their types. 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank


 Many of the most widely used programming languages (such as C++, Object Pascal, 

Java, Python, etc.) are multi-paradigm and they support object-oriented programming 

to a greater or lesser degree, typically in combination with imperative, procedural 

programming. Significant object-oriented languages 

include Java, C++, C#, Python,PHP, JavaScript, Ruby, Perl, Object Pascal, Objective-

C, Dart, Swift, Scala, Common Lisp, and Smalltalk. 

 

 FEATURES 

 

 Class-based vs prototype-based 

In class-based languages the classes are defined beforehand and the objects are instantiated 

based on the classes. If two objects apple and orange are instantiated from the class Fruit, 

they are inherently fruits and it is guaranteed that you may handle them in the same way; e.g. 

a programmer can expect the existence of the same attributes such as color or sugar 

content or is ripe. 

 Dynamic dispatch/message passing 

It is the responsibility of the object, not any external code, to select the procedural code to 

execute in response to a method call, typically by looking up the method at run time in a table 

associated with the object. This feature is known as dynamic dispatch, and distinguishes an 

object from an abstract data type (or module), which has a fixed (static) implementation of 

the operations for all instances. If the call variability relies on more than the single type of the 

object on which it is called (i.e. at least one other parameter object is involved in the method 

choice), one speaks of multiple dispatch. 

 Encapsulation 

Encapsulation is an object-oriented programming concept that binds together the data and 

functions that manipulate the data, and that keeps both safe from outside interference and 

misuse. Data encapsulation led to the important OOP concept of data hiding. 

If a class does not allow calling code to access internal object data and permits access through 

methods only, this is a strong form of abstraction or information hiding known 

as encapsulation.  

 Polymorphism 

Subtyping - a form of polymorphism - is when calling code can be agnostic as to which class 

in the supported hierarchy it is operating on - the parent class or one of its descendants. 

Meanwhile, the same operation name among objects in an inheritance hierarchy may behave 

differently. 

 

 

 

 OOP LANGUAGES 

 

Simula (1967) is generally accepted as being the first language with the primary features of 

an object-oriented language. It was created for making simulation programs, in which what 
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came to be called objects were the most important information 

representation. Smalltalk (1972 to 1980) is another early example, and the one with which 

much of the theory of OOP was developed. Concerning the degree of object orientation, the 

following distinctions can be made: 

 Languages called "pure" OO languages, because everything in them is treated 

consistently as an object, from primitives such as characters and punctuation, all the way 

up to whole classes, prototypes, blocks, modules, etc. They were designed specifically to 

facilitate, even enforce, OO methods. 

Examples: Python, Ruby, Scala, Smalltalk, Eiffel, Emerald,[26] JADE, Self. 

 Languages designed mainly for OO programming, but with some procedural elements. 

Examples: Java, C++, C#, Delphi/Object Pascal, VB.NET. 

 Languages that are historically procedural languages, but have been extended with some 

OO features. Examples: PHP, Perl, Visual Basic (derived from 

BASIC), MATLAB, COBOL 2002, Fortran 2003, ABAP, Ada 95, Pascal. 

 Languages with most of the features of objects (classes, methods, inheritance), but in a 

distinctly original form. Examples: Oberon (Oberon-1 or Oberon-2). 

 

 DESIGN PATTERNS 

Challenges of object-oriented design are addressed by several approaches. Most 

common is known as the design patterns codified by Gamma et al.. More broadly, the 

term "design patterns" can be used to refer to any general, repeatable, solution pattern 

to a commonly occurring problem in software design. Some of these commonly 

occurring problems have implications and solutions particular to object-oriented 

development. 

The outcome of this program is that the students were provided good knowledge about the 

object oriented programming concepts. 
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