
NEW HORIZON COLLEGE OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

--

EXPERT TALK SERIES -EVEN SEM (2018-2019)

--

Subject: Object Oriented Programming Expert name: Ms. Sushma

Audience: IV A&B Date: 14-04-2019(11:00AM-12:00AM)

 The department of Information Science and Engineering has conducted Expert talk

on the topic “Object Oriented Programming” for the 4th semester students on 14th APRIL,

2019 under the supervision of ISE Head of the department, Dr. Anandhi R J at ISE

department. The expert speaker, Ms. Sushma was invited to conduct the same.

• Speaker is multi skilled professional with 7+ years of experience in the IT industry

specialized with OS, Data Structures, Data Science, and Java.

VARIOUS SESSIONS THROUGHT THE PROGRAM:

Expert talk on Object Oriented Programming taken by Ms. Sushma

TOPICS COVERED:

• Introduction to Object Oriented Programming

• Features

• OOP Languages

• Design Patterns

 INTRODUCTION TO OBJECT ORIENTED PROGRAMMING

 Object-oriented programming (OOP) is a programming paradigm based on the

concept of "objects", which can contain data, in the form of fields (often known

as attributes), and code, in the form of procedures (often known as methods). A

feature of objects is an object's procedures that can access and often modify the data

fields of the object with which they are associated (objects have a notion of "this" or

"self"). In OOP, computer programs are designed by making them out of objects that

interact with one another. OOP languages are diverse, but the most popular ones

are class-based, meaning that objects are instances of classes, which also determine

their types.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

 Many of the most widely used programming languages (such as C++, Object Pascal,

Java, Python, etc.) are multi-paradigm and they support object-oriented programming

to a greater or lesser degree, typically in combination with imperative, procedural

programming. Significant object-oriented languages

include Java, C++, C#, Python,PHP, JavaScript, Ruby, Perl, Object Pascal, Objective-

C, Dart, Swift, Scala, Common Lisp, and Smalltalk.

 FEATURES

 Class-based vs prototype-based

In class-based languages the classes are defined beforehand and the objects are instantiated

based on the classes. If two objects apple and orange are instantiated from the class Fruit,

they are inherently fruits and it is guaranteed that you may handle them in the same way; e.g.

a programmer can expect the existence of the same attributes such as color or sugar

content or is ripe.

 Dynamic dispatch/message passing

It is the responsibility of the object, not any external code, to select the procedural code to

execute in response to a method call, typically by looking up the method at run time in a table

associated with the object. This feature is known as dynamic dispatch, and distinguishes an

object from an abstract data type (or module), which has a fixed (static) implementation of

the operations for all instances. If the call variability relies on more than the single type of the

object on which it is called (i.e. at least one other parameter object is involved in the method

choice), one speaks of multiple dispatch.

 Encapsulation

Encapsulation is an object-oriented programming concept that binds together the data and

functions that manipulate the data, and that keeps both safe from outside interference and

misuse. Data encapsulation led to the important OOP concept of data hiding.

If a class does not allow calling code to access internal object data and permits access through

methods only, this is a strong form of abstraction or information hiding known

as encapsulation.

 Polymorphism

Subtyping - a form of polymorphism - is when calling code can be agnostic as to which class

in the supported hierarchy it is operating on - the parent class or one of its descendants.

Meanwhile, the same operation name among objects in an inheritance hierarchy may behave

differently.

 OOP LANGUAGES

Simula (1967) is generally accepted as being the first language with the primary features of

an object-oriented language. It was created for making simulation programs, in which what

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

came to be called objects were the most important information

representation. Smalltalk (1972 to 1980) is another early example, and the one with which

much of the theory of OOP was developed. Concerning the degree of object orientation, the

following distinctions can be made:

 Languages called "pure" OO languages, because everything in them is treated

consistently as an object, from primitives such as characters and punctuation, all the way

up to whole classes, prototypes, blocks, modules, etc. They were designed specifically to

facilitate, even enforce, OO methods.

Examples: Python, Ruby, Scala, Smalltalk, Eiffel, Emerald,[26] JADE, Self.

 Languages designed mainly for OO programming, but with some procedural elements.

Examples: Java, C++, C#, Delphi/Object Pascal, VB.NET.

 Languages that are historically procedural languages, but have been extended with some

OO features. Examples: PHP, Perl, Visual Basic (derived from

BASIC), MATLAB, COBOL 2002, Fortran 2003, ABAP, Ada 95, Pascal.

 Languages with most of the features of objects (classes, methods, inheritance), but in a

distinctly original form. Examples: Oberon (Oberon-1 or Oberon-2).

 DESIGN PATTERNS

Challenges of object-oriented design are addressed by several approaches. Most

common is known as the design patterns codified by Gamma et al.. More broadly, the

term "design patterns" can be used to refer to any general, repeatable, solution pattern

to a commonly occurring problem in software design. Some of these commonly

occurring problems have implications and solutions particular to object-oriented

development.

The outcome of this program is that the students were provided good knowledge about the

object oriented programming concepts.

List of Participants

USN NAME

1NH17IS001 JAMUNA.A

1NH17IS002 ABHINAV ANAND

1NH17IS004 ADITYA KOKANAY

1NH17IS005 AISWARYA V KUMAR

1NH17IS006 AKASH.K.R

1NH17IS007 AKEPATI SASSANK GOPAL REDDY

1NH17IS008 AKHILA S

1NH17IS009 AKSHAY S PRATHAP

1NH17IS011 PAVEL ANUP

1NH17IS012 ANEESH MOHAN KUMAR

1NH17IS013 ANITHA.B

1NH17IS015 ANUSHA K

1NH17IS016 APURBA BHATTACHARJEE

1NH17IS017 AYUSH ANAND SAHU

1NH17IS018 AYUSH SHARMA

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank#cite_note-26
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

1NH17IS019 BHOOMIKA K C

1NH17IS020 BHUMIKA.V

1NH17IS021 BISHAL KUMAR SAH

1NH17IS022 BRUNDA S G

1NH17IS023 HARSHA VARDHAN.C.R

1NH17IS026 CHETAN YG

1NH17IS027 CHINMAYA KUMAR NAYAK

1NH17IS028
DARSHAN CHANDRA SHEKAR
SHETTY

1NH17IS029 DEEPAK KUMAR SAH

1NH17IS030 DEEPTHI P

1NH17IS031 DHANUSH R

1NH17IS032 DHARANI

1NH17IS034 DISHA SINGH

1NH17IS035 DIVYA SHREE M

1NH17IS036 EDWIN JOSHUA JOHN

1NH17IS038 GIRISH R

1NH17IS039 HAMSA P O

1NH17IS040 HARINI V N

1NH17IS042 HELEN HEPHZIBAH. D

1NH17IS043 HIMANSHU BHATT

1NH17IS044 HITESH SUHAS

1NH17IS045 JOICY CASTILINO

1NH17IS046 K N BHANU PRIYA

1NH17IS047 KAKI RAVI TEJA

1NH17IS048 KIRTI DEVI

1NH17IS049 KSHITIJ RAJ

1NH17IS050 KUSHALA R

1NH17IS051 MALAVIKA N

1NH17IS052 MANOJ R

1NH17IS053 MERVIN SHIBU GEORGE

1NH17IS055 MOHAMMED OWEZ

1NH17IS056 MONISHA K

1NH17IS057 N MANVITHA REDDY

1NH17IS059 NETHAN SHAIK

1NH17IS060 N G DIVYA

1NH17IS061 NIRANJAN YADAV

1NH17IS062 NIVEDHA S

1NH17IS063 P KUMAR SATEESH

1NH17IS064 P VISHNUVARDHAN REDDY

1NH17IS067 POOJA M.SAJJAN

1NH17IS068 POOJA S SINGH

1NH17IS069 PRAJWAL G

1NH17IS070 PRANOY ROY

1NH17IS071 PRASANNA BHAT

1NH17IS072 PREETHI S

1NH17IS073 PURAB SHREENIWAS. A

1NH17IS075 R RANJITHA

1NH17IS076 R S SATHVIK REDDY

1NH17IS077 RAAHUL NARAYANA REDDY

1NH17IS078 RACHANA M S

	 Class-based vs prototype-based
	 Dynamic dispatch/message passing
	 Encapsulation
	 Polymorphism

